1 research outputs found

    The Effect of Laser Shock Peening (LSP) on the Surface Roughness and Fatigue Behavior of Additively Manufactured Ti-6Al-4V Alloy

    Get PDF
    Laser shock peening (LSP) uses plasma shock waves to induce compressive residual stress at the surface of a component which has the potential to improve its fatigue properties. For AM parts, the existence of internal defects, surface roughness, and tensile residual stresses leads to noticeably lower fatigue strength compared to materials produced through conventional processes. Furthermore, there is a tendency for greater scatter in the fatigue behavior of these parts when compared to traditionally manufactured components. In this study, the effect of LSP on the roughness and fatigue behavior of Ti-6Al-4V alloy constructed through Laser Powder Bed Fusion (L-PBF) technique was investigated. Two types of samples were designed and tested: as-built surface air foil samples for four-point bending tests and machined surface straight gage samples for uniaxial fatigue testing. Two sets of process parameters, optimized and non-optimized, were also used for the fabrication of each sample type. It was found that LSP had negative effects on the smooth (i.e., machined) surface samples, whereas for as-built surfaces the roughness was enhanced by decreasing the sharpness of the deep valleys and partially remelting the loosely bonded particles on the peaks. It was found that the scatter of the fatigue data decreased for optimized machined samples, while no clear improvement was observed in their lives. However, all non-optimized samples showed improvements in fatigue lives after the LSP process
    corecore